

Self-Terminating Write of Multi-Level Cell ReRAM for Efficient Neuromorphic Computing

Zongwu Wang (Speaker)

Zhezhi He*, Rui Yang, Shiquan Fan, Jie Lin, Fangxin Liu, Yueyang Jia, Chenxi Yuan, Qidong Tang and Li Jiang*

Shanghai Jiao Tong University

2022年2月28日

Self-Terminating Write Scheme Overview

Challenges In ReRAM-based PIM

- ReRAM has intrinsic write variation
- Read disturb induces resistance drifting
- Write-verify scheme is relative slow

Write variation (CDF vs resistance) Cumulative Probability 5 5 0 0000000 0 5 66 $\mu = 1.43e + 07$ $\sigma/\mu = 23.0\%$ HRS(sim) $\mu = 1.44e + 05$ LRS(sim) $\sigma/\mu = 8.7\%$ HRS(mea) LRS(mea) 2 🕺 20 k 180 k 150 k 7 M 10 M 14 M 20 M Resistance (Ω)

- Measurement and simulation results comparison
- C2C variation exists in programming
- Set and Reset have significant write variation (8% and 23%, respectively)

Read disturb (conductance vs. #read times)

- ReRAM suffers from read induced drifting
- In-Memory computing equivalents to read
- Reliability test shows 6.6% and 45.6% drifting

Proposed Solution

- Heavily peripherals reuse achieves precise selfterminating scheme(2-bit)
- Pick appropriate programming range according to circuit design
- Compare to Write-verify scheme, Reduce the latency and energy by 4.7x and 2x, respectively

Self-Terminating Write Scheme Design

Proposed Self-Terminating Write Scheme

- Reuse the peripherals in ReRAM-based PIM system
- Implementing both Set and Reset termination with circuit sharing
- > Compact design achieves low cost and fast feedback (high precision)

Self-Terminating Write Scheme Evaluation

	Structure	Area	Terminate	Precision
This work	2Amp+5T+NOR	Medium	both	2 bits
JSSC-2013 [10]	2Amp+R+30T +DelayUnit+others	Large	both	1 bit
ISSCC-2014 [24]	4T	Small	set	1 bit
IEDM-2017 [6]	RESET: Amp+4SW+6T SET: 5T	Medium	both	1 bit
ISSCC-2021 [25]	2Amp+R+5T+3INV +AND+Delay Unit	Large	set	1 bit

Comparison with previous works (area, programming polarity and precision) :

- Reduces area overhead by peripherals reuse
- Supports both Set and Reset termination
- Achieves 2-bit MLC self-terminating

$10^4~{\rm trials}~{\rm MC}~{\rm simulation}~{\rm with}~{\rm range}~{\rm selection}$ algorithm

the proposed STW scheme achieves 2-bit precision

Self-Terminating Write Scheme Evaluation

Impact of Read disturb on inference accuracy:

- Accuracy loss with the continuous inference after the network deployed
- MLC can reduce the storage/computation cost, but it is more vulnerable to read disturb

Refresh Frequency and Accuracy Balancing:

The lower the refresh frequency, the lower the proportion of refresh delay, but the lower the accuracy

Proportion of delay on different networks

- Ratio of refresh latency is low on compact networks
- From the perspective of deployment cost, programming delay is an important factor

1. An auto-calibrate Framework

Provides easy-use and confidence ReRAM compact model
A valid self-terminated programming scheme for MLC
Heavily reuses the original peripheral
Compact design achieves low cost and high precision
Reduce the latency and energy by 4.7x and 2x, respectively
Cross-layer simulation (device/circuit/system) to validate the design